Leaf-分布式ID生成系统
分布式服务场景下,业务系统对于数据库中主键ID的需求主要有以下:
1.全局唯一性:不能出现重复的ID号。
2.趋势递增:在MySQL InnoDB引擎中使用的是聚集索引,由于多数RDBMS使用B-tree的数据结构来存储索引数据,在主键的选择上面我们应该尽量使用有序的主键保证写入性能。
3.单调递增:保证下一个ID一定大于上一个ID,例如事务版本号、IM增量消息、排序等特殊需求。
4.信息安全:如果ID是连续的,恶意用户的扒取工作就非常容易做了,直接按照顺序下载指定URL即可;如果是订单号就更危险了,竞对可以直接知道我们一天的单量。所以在一些应用场景下,会需要ID无规则、不规则。
5.可靠性:业务还对ID号生成系统的可用性要求极高,如果ID生成系统瘫痪,整个业务系统都将瘫痪。
针对上述需求,ID生成系统的目标应为:
1.平均延迟和TP999延迟都要尽可能低;
2.可用性5个9;
3.高QPS。
leaf-segment方案和leaf-snowflake方案分别实现了:1235和1245.
- leaf-segment方案
- 1该方案需要数据库有一个专用的表来存储各个主键的相关信息。
biz_tag,max_id,step,desc,update_time。重要字段说明:biz_tag用来区分业务,max_id表示该biz_tag目前所被分配的ID号段的最大值,step表示每次分配的号段长度。原来获取ID每次都需要写数据库,现在只需要把step设置得足够大,比如1000。
例如:biz_tag=order,max_id=3000,step=1000.代表order表的主键目前已经使用的id到达3000,下一次再获取1000个id后,则max_id为4000。proxy-server每次从数据库取1000个id,然后用来相应业务服务的id请求。 - 2
proxy-server采用双buffer。当号段消费到某个点时就异步的把下一个号段加载到内存中。而不需要等到号段用尽的时候才去更新号段,不需要在DB取号段的时候阻塞请求线程。这样做就可以很大程度上的降低系统的TP999指标。
Leaf服务内部有两个号段缓存区segment。当前号段已下发10%时,如果下一个号段未更新,则另启一个更新线程去更新下一个号段。当前号段全部下发完后,如果下个号段准备好了则切换到下个号段为当前segment接着下发,循环往复。
每个biz-tag都有消费速度监控,通常推荐segment长度设置为服务高峰期发号QPS的600倍(10分钟),这样即使DB宕机,Leaf仍能持续发号10-20分钟不受影响。
每次请求来临时都会判断下个号段的状态,从而更新此号段,所以偶尔的网络抖动不会影响下个号段的更新。
1.3这种模式有以下优缺点:
优点:
Leaf服务可以很方便的线性扩展,性能完全能够支撑大多数业务场景。
ID号码是趋势递增的8byte的64位数字,满足上述数据库存储的主键要求。
容灾性高:Leaf服务内部有号段缓存,即使DB宕机,短时间内Leaf仍能正常对外提供服务。
可以自定义max_id的大小,非常方便业务从原有的ID方式上迁移过来。
缺点:
ID号码不够随机,能够泄露发号数量的信息,不太安全。
DB宕机会造成整个系统不可用。
2 leaf-snowflake方案
2.1Leaf-snowflake方案完全沿用snowflake方案的bit位设计,即是“1+41+10+12”的方式组装ID号。对于workerID的分配,当服务集群数量较小的情况下,完全可以手动配置。Leaf服务规模较大,动手配置成本太高。所以使用Zookeeper持久顺序节点的特性自动对snowflake节点配置wokerID。Leaf-snowflake是按照下面几个步骤启动的:
启动Leaf-snowflake服务,连接Zookeeper,在leaf_forever父节点下检查自己是否已经注册过(是否有该顺序子节点)。
如果有注册过直接取回自己的workerID(zk顺序节点生成的int类型ID号),启动服务。
如果没有注册过,就在该父节点下面创建一个持久顺序节点,创建成功后取回顺序号当做自己的workerID号,启动服务。
2.2对于,时钟回退问题,系统予以了充分的考虑,设计如下逻辑处理。
服务启动时首先检查自己是否写过ZooKeeper leaf_forever节点:
若写过,则用自身系统时间与leaf_forever/${self}节点记录时间做比较,若小于leaf_forever/${self}时间则认为机器时间发生了大步长回拨,服务启动失败并报警。
若未写过,证明是新服务节点,直接创建持久节点leaf_forever/${self}并写入自身系统时间,接下来综合对比其余Leaf节点的系统时间来判断自身系统时间是否准确,具体做法是取leaf_temporary下的所有临时节点(所有运行中的Leaf-snowflake节点)的服务IP:Port,然后通过RPC请求得到所有节点的系统时间,计算sum(time)/nodeSize。
若abs( 系统时间-sum(time)/nodeSize ) < 阈值,认为当前系统时间准确,正常启动服务,同时写临时节点leaf_temporary/${self} 维持租约。
否则认为本机系统时间发生大步长偏移,启动失败并报警。
每隔一段时间(3s)上报自身系统时间写入leaf_forever/${self}。
由于强依赖时钟,对时间的要求比较敏感,在机器工作时NTP同步也会造成秒级别的回退,建议可以直接关闭NTP同步。要么在时钟回拨的时候直接不提供服务直接返回ERROR_CODE,等时钟追上即可。或者做一层重试,然后上报报警系统,更或者是发现有时钟回拨之后自动摘除本身节点并报警